AGU RESEARCH

世界を解き明かすコラム
ー 研究者に迫る ー

私たちが生きている世界には、
身近なことから人類全体に関わることまで、
さまざまな問題が溢れています。
意外に知られていない現状や真相を、
本学が誇る教員たちが興味深い視点から
解き明かします。

  • 理工学部
  • センサの技術と可能性
  • 戸辺 義人 教授
  • 理工学部
  • センサの技術と可能性
  • 戸辺 義人 教授

スマートフォンの普及で身近になったセンサ技術

私は、「センサを使って、どんなことが実現できるか」について研究しています。
センサとは、力の大きさ、距離の遠近、明るさなど、現象や対象の物理状態の変化を捉え、信号やデータに変換して出力する装置や機器のことです。こう書くと「難しい」と感じる人も多いと思います。

 

たしかに、従来のセンサは、主に工場の機械に組み込まれていて、制御や省力化、品質管理を行うためのもの、あるいは機器や製品に組み込まれて自動化や使いやすさ、安全性の向上を可能にするためのものでした。いずれも戦後日本の工業製品の競争力強化に大きな貢献をしたキーテクノロジーではありますが、その機能はきわめて限定的で、私たちがその存在を身近に感じることはありませんでした。

 

しかし近年、スマートフォンの普及によって、センサは急速に身近な存在になりました。世界で年間6億台近くが出荷されるこの小さな端末には、実はさまざまなセンサが満載されているのです。

 

例えば、スマートフォンを横向きに傾けると、その動きに応じて画面も横向きに回転します。これは、ジャイロセンサの働きによるものです。ジャイロセンサとは、角速度(ある物体の角度が単位時間当たりどれだけ変化しているか、つまり物体が回転している速度)を測るセンサです。

 

また、近接センサは、物理的に接触することで電流のON/OFFが切り替わる機械式スイッチとは異なり、対象物が近づいただけでON/OFFを切り替えることができるセンサです。スマートフォンでは、通話の際に耳を本体に近づけるだけで自動的にタッチパネルディスプレイがOFFになり、誤動作を防止するなどの機能に役立てられています。

 

ほかにも、輝度センサ、加速度センサ、重力センサ、気圧センサ、温度センサなど、多くのセンサが、あの小さな端末に収まっているのです。そして私たちは「アプリ」という形で、各種センサの機能を享受しています。

 

このように、ひと昔前には想像もつかなかったほど多種類のセンサがスマートフォンに搭載され、それを人々が持ち歩く時代になっています。

 

スマートフォンの急速な普及にともなって、さらに高機能・高性能のセンサを目指した研究・開発が急ピッチで進んでいます。センサの利用技術は、大きな可能性を秘めているのです。

「センサ+ネットワーク」がひらく可能性

スマートフォンやウェアラブル端末の普及は、「多くの人々が高性能センサを常に持ち歩く状態」と同時に、「高性能センサがネットワークに常時接続された状態」を作り出します。この「センサ・ネットワーク」は、社会のあらゆる機器や社会インフラ(建物・道路・鉄道など)、人(スマートフォン・ウェアラブル端末など)に取り付けられたセンサをネットワークでつなぎ、そこから膨大なデータを収集・分析することによって、さまざまな課題解決法を提供する仕組みです。

 

例えば、ある気象情報サービス企業は、天候の予測に、会員のスマートフォンからの報告や位置情報、カメラで撮影した実際の空の画像などを活用しています。自社の観測網だけでは捉えきれないデータを、スマートフォンという「圧倒的な数の力」を活かして収集しているのです。

 

また、橋やトンネルなどにセンサを設置し、常時モニタリングすることで、亀裂が入るなどの異常が起こった際に点検を行うよう警告を発したり、災害時におけるインフラの被害状況を、人がその場に行かなくてもリアルタイムで把握できるようにするシステムなども検討されています。

 

さらに、医療費の増加や高齢化などの課題にもセンサ・ネットワークが役立ちます。日本政府は、医療給付費削減を狙って在宅医療を推進しています。こうした中で、無線センシングは健康状態の管理を支援するものと位置づけられています。基本は、体温、心拍などの情報を人体に装着するウェアラブル・センサとすることです。日本のあるメーカーでは、健康管理を目的に、心拍センサと加速度センサを搭載したリストバンド型機器を製品化しています。心拍センサと加速度センサを利用することで、例えば、睡眠、散歩、室内歩行といった毎日の生活リズムと体調を、時系列データとして蓄積できます。現在のデータと過去のデータを照らし合わせて、もし、通常と異なる変化が見られた場合には、システムが「体調の異変」と判断し、迅速に医療機関へ通報するなどの対応をとることができます。

 

このように、さまざまな社会的課題の解決や、新たなビジネスの創出に、センサ・ネットワークの活用が期待されているのです。

センサで「人と人とのコミュニケーション」向上を図る

こうした中、現在、私たちの研究グループが取り組んでいるテーマが「人と人とのコミュニケーションの円滑化に役立つセンサ技術」です。

 

例えばミーティング。職場や学校、家庭、地域コミュニティなど、ミーティングはさまざまな集団において意思決定や合意形成を行うための大切な手段ですが、参加メンバー全員が活発に発言し、その意見を速やかに集約することの難しさを感じている人は多いのではないでしょうか?

 

活発なミーティングを行うためには、「ミーティングの活発度」を評価するための客観的な指標が必要です。こうした指標があれば、異なるミーティングの活発度を比較し分析を行うことによって、活発なミーティングを促すためのアドバイスが可能となります。そこで私たちの研究室では、ミーティング活発度の指標を定義し、ミーティングの良し悪しを判断するシステムを研究しています。

 

この研究では、ミーティングの音声情報をセンシングし、参加メンバーの誰が話しているかの解析を行った後、以下の3つの指標を用いてミーティングの活発度を定量化しています。

 

(1) 議論公平度…活発なミーティングには、参加メンバーが公平に議論に参加していることが必要です。そこで、メンバー各人の発言時間に注目し、全員が平等に発言しているかを測るための指標です。

 

(2) 議論支配度…活発な議論を促すためには、司会進行役である支配者(リーダー)の存在が重要です。ここでは、メンバー各人の発言頻度に注目し、発言頻度の高いメンバーをリーダーとみなします。

 

(3) 議論調停度…リーダーはメンバーの意見を引き出すために、発言権を平等に与えることが必要です。ここでは、「リーダーの発言後に発言するメンバーが誰か」を分析することにより、リーダーが発言権を公平に与えているかどうかを測ります。

 

以上の情報を解析し、ミーティング活発度の指標を求めるシステムが「KAIHUI」です。研究室では、「参加メンバーの性別」「ミーティングのテーマ」「議論の進め方」が異なる6種類のミーティングを対象に、KAIHUIを用いてミーティング活発度を計測しました。

この研究は、まだ入口にたどり着いたばかりです。今後は、参加メンバーの発言内容や表情、身振りなどの要素を加えることで、ミーティングの「質」に着目した指標づくりをする必要があるでしょう。今後も研究を進めることで、将来的には、「ファシリテーターロボット」が実現するかもしれません。時には気の利いたジョークなども交えながら、参加者の発言を促し、話の流れを整理し、参加者の認識の一致を確認し、合意形成や相互理解をサポートするロボットです。

 

センサ技術は、「これまで測れなかったものを測れるようにする」ことで進歩してきました。今後の研究によって、例えば「幸福度」や「快適度」なども測れるようになるかもしれません。センサ技術の発展は、無限の可能性を秘めているのです。

 

(2016年掲載)

あわせて読みたい

  • 『センサネットワーク技術 -ユビキタス情報環境の構築に向けて』 安藤繁・戸辺義人・田村陽介・南正輝 著 (東京電気大学出版局:2005)。
  • 『ワイヤレスセンサシステム』 佐藤光 監修・著 (東京電気大学出版局:2012)。

青山学院大学でこのテーマを学ぶ

理工学部

  • 理工学部
  • 戸辺 義人 教授
  • 所属:青山学院大学 理工学部 情報テクノロジー学科
    担当科目:インターネット特論(大学院)、インターンシップ(第一部)、コンピュータと社会(第一部)、システム構築実習(第一部)、計算機概論(第一部)、計算機実習Ⅱ(第一部)、情報テクノロジー輪講Ⅰ(第一部)、情報テクノロジー輪講Ⅱ(第一部)、情報と社会(第一部)、情報ネットワーク(第一部)、卒業研究(第一部)、卒業研究Ⅰ(第一部)、卒業研究Ⅱ(第一部)、知能情報特別輪講A(大学院)、知能情報特別輪講B(大学院)、知能情報特別輪講C(大学院)、知能情報特別輪講D(大学院)、理工学特別実験・演習A(大学院)、理工学特別実験・演習B(大学院)、理工学特別実験・演習C(大学院)、理工学特別実験・演習D(大学院)
    専門分野及び関連分野:情報通信工学, センサ工学
研究者情報へリンク
  • 理工学部
  • 戸辺 義人 教授
  • 所属:青山学院大学 理工学部 情報テクノロジー学科
    担当科目:インターネット特論(大学院)、インターンシップ(第一部)、コンピュータと社会(第一部)、システム構築実習(第一部)、計算機概論(第一部)、計算機実習Ⅱ(第一部)、情報テクノロジー輪講Ⅰ(第一部)、情報テクノロジー輪講Ⅱ(第一部)、情報と社会(第一部)、情報ネットワーク(第一部)、卒業研究(第一部)、卒業研究Ⅰ(第一部)、卒業研究Ⅱ(第一部)、知能情報特別輪講A(大学院)、知能情報特別輪講B(大学院)、知能情報特別輪講C(大学院)、知能情報特別輪講D(大学院)、理工学特別実験・演習A(大学院)、理工学特別実験・演習B(大学院)、理工学特別実験・演習C(大学院)、理工学特別実験・演習D(大学院)
    専門分野及び関連分野:情報通信工学, センサ工学
  • 研究者情報へリンク

関連キーワード

関連キーワード

関連コンテンツ

  • 理工学部
  • とても薄い無機薄膜の大きな力
  • 重里 有三 教授
  • 日頃、無機薄膜という言葉はあまり耳にしないだろう。しかし、無機薄膜はスマートフォンやパソコンなどの電化製品には欠かせないものであり、無機薄膜のことを知ると日常の世界が違って見えるくらい、私たちの日常生活の中に浸透している。無機薄膜とはどのようなもので、今後研究を進めていくことでどのような世界を実現しうるのか。私の研究内容を例にしてお話ししたい。(2020年掲載)

  • 社会情報学部 社会情報学科
  • お金に関する人々の行動メカニズムを紐解き、金融市場の安定化へ
  • 伏屋 広隆 教授
  • 金融市場では、時として他者の売買を模倣し追随する行動が広がる。すると株価が適正範囲を超えて大きく変動し、市場の不安定化を招く。伏屋広隆教授は、金融市場の動きを長期的な傾向と短期的な不確実性に分けて考察し、追随行動などにより広がる不確実性を適性範囲内に抑え、金融市場の安定化に寄与すべく研究を続けている。そこで活用されるのが確率微分方程式。金融に限らずさまざまな社会現象、自然現象の動向予測への応用が期待される。 (2023年公開)

  • 経済学部
  • 数十年先の人口分布を町丁・字単位で予測し
    都市計画や防災計画の
    基礎となるデータを提供する
  • 井上 孝 教授
  • 人口構造の変化を長期的に見通すことは、国や自治体の政策立案において欠かせない。人口減少に拍車がかかる日本ではなおさらだ。しかし、詳細な人口推計は技術的な壁により、困難を極めた。推計エリアが狭いほど生じる数値の「ぶれ」をいかに抑えるか。井上教授はある古典的な理論を応用して画期的な方程式を編み出し、全国小地域別将来人口推計を実現させた。本コラムでは研究者の人となりに迫りながら、新手法の内容を解説する。 (2021年掲載)

関連コンテンツ

  • 理工学部 情報テクノロジー学科
  • ものの動きから芸術家の画風まで、CG技術でより高精度に再現する
  • 楽 詠灝 教授

  • 文学部
  • 「SSARCモデル」が導く
    一人一人の認知能力に適した
    学び方を選べる未来
  • ロビンソン,P.J. 教授

  • 経営学部 経営学科
  • 専門知見を社会の利益へ。
    より価値を生み出せるデータサイエンスの探究
  • 保科 架風 准教授